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The mechanical characteristics of different alloys, polymers, and composites differ as 
a result of anisotropy and their dependence of the type of stress state. These features are 
manifest both during instantaneous loading and over time. 

Determining creep equations of anisotropic media with different creep resistances in 
tension and compression were constructed in [i, 2]. Aspects of the elastic deformation of 
variable-modulus anisotropic materials were examined in [3, 4]. 

The approach proposed and substantiated in [5] for the description of creep of materials 
with a variable resistance to creep is extended here to the elasticity of anisotropic vari- 
able-modulus media. 

i. For the elastic potential 

m = o /2 

the equivalent stress Oe (Oe >= 0) is taken on the basis of linear o = bijoij and quadratic 
o~ = aijks163 compatible invariants of the stress tensor oij and tensors of elastic aniso- 
tropy bij, aijks i.e., in the form Oe = o + o 0. Then the components of the strain tensors 
eij = 8W/8oij and the stresses prove to be connected to each other by the following quasi- 
linear relations in anisotropic variable-modulus media: 

~ij = % ( a ~ . ~ k d %  + b~j). (1 .1)  

The symmetry of aijks and bij follow from the symmetry of the tensors oij = zji and Eij = ~ji, 

i.e., 

bi j  ~ b~i, a~j~,/ = aji~z = a~.ita = a~l i j .  

Thus, in determining equations (i.i) the number of unknown constants aijk~ is reduced to 21 
and the number of constants bij is reduced to six. Due to the invariance of the expressions 
for o and o 0, equations (i.i) retain their form in the transition to a new coordinate system. 
Here, the tensors bij and aijks are transformed in accordance with the customary rules for 
second- and third-rank tensors: 

r * 

bo = czmi~ aijkz = ami~Znjaph~Zqlamnpq. ( 1 . 2 )  

Here, ~ij are the direction cosines of the angles between the principal axes xi and the new 

axes x' j. 

For classical media, the linear invariant o = 0 and equations (i.i) are transformed into 

the well-known relations Eij = aijk~ok~. 

If an orthotropic variable-modulus medium is examined in a coordinate system with axes 
which coincide with the principal directions of anisotropy, the physical relations (i.i) can 
be written in the form 

( all~lall -]-al'22cr22-~ allaa~ + b~)i  
IBll ~ (~e ~ 0  

.2 ~ (1.3) 90 a l .21.2 01.2 {] 2, 3), ~o = a~man + 2aa~2.2crn%2 + 2(t!133UliO'33 + 
$12  ~ ~ e (YO k 

"2 2 0.2 + 2a2233a2~%3 + a22.22a22 + a3333%3 + fiaj.212 1~ + 4ax3x3q~3 + 4a.2.~.23~r~3, 
a = b ~ f l n  + b22(Y.22 -}- bza%a. 
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The following relations are valid for a variable-modulus isotropic medium: 

a1212  - -  a1313  ~ ~q.,:~23~ (/1122 ~ (~1133 -----, (~2233 :~- C : ~  

a~lil :=: 2a1212 I- (/I122, 

making it possible to obtain the following equations from (1.3): 

[(A*-- 2C*)J~O<~ + 2CZ~j_~ B,6ij l ' 
g i j  ~ ~e  frO .J 

where 5ij is the Kronecker delta; Jl = oijdij; J2 = (oijoij - J~)/2; o = B*JI; o~ = h*J~ + 
4C*J 2. Thus, the physical relations are written in this case on the basis of the first Jl 
and second J2 invariants of the stress tensor and three parameters A*, B*, and C* of the 
material. 

Thus, proposed determining equations (i.i) have sufficient generality and include sever- 
al relations for different media. 

Let us compare theoretical results following from (1.3) with some experimental data. 
To do this, we will examine SV~ glass-fiber-reinforced plastic characterized by a ratio of 
5:1 (an orthotropic variable-modulus material). The elastic moduli in the principal anisot- 
ropy directions I, 2 of this material (in kgf/mm 2) were found experimentally in [6]: E~ = 
5220, E~ = 1990, E~ = 5450, E~ = 3250. Here the superscript t corresponds to tension and the 
superscript c corresponds to compression. Then in coordinate axes coincident with the direc- 
tions i, 2 we can determine the constants from the formula 

~ = [ (~)E * -x/~ + (E~) -x /~]V4,  b ~  = [ (E~)  -~ / '  - -  ( E ~ ) - ' / ~ ] / 2  0 . 2 ) ,  

= 2 1 i e. allzl 1.875"10 -~ mm2/kgf, a222~ = 3.992.10 -4 bll 1.476 i0 -z, (kgf/mm)-~, b22 
2.438.10 -3. Study [6] also reported experimental elastic moduli in tension and compression 
for flat specimens oriented at an angle ~/4 to the axes i, 2 (kgf/mm2); E~5 = 1510, Ec,5 = 
1720. Taking Et45 as well as Etz, Et2, ECl, EC2 for the base data, we will attempt to pre- 
dict the elastic modulus EC,5 and we will compare it with the experimental value. In fact, 
for coordinate axes rotated by ~/4 relative to the directions i, 2 we write 

F ~  ' = ( E}  ~- i /2  V ' "' c --i/~ 
P all.ll ~- bll \ 451 , (~iiii -- 011 = (E45) �9 

Here the prime denotes values of the parameters in the new coordinate system. Since b{l = 
! I 

(bll + b~)/2 in accordance with (1.2), we can find al!!! = [(E~s)-~ - b~l] 2 and then find 
C -- ! E45 - (/allll - b{l) -2. Performing these calculations, we obtain a theoretical value E c - ~5 -- 

1866 kgf/mm 2. The agreement with the experimental value E~s = 1720 kgf/mm 2 can be consider- 
ed satisfactory in the given example. 

The comparison made between the theoretical and experimental results cannot be considered 
adequate for substantiation of the proposed determining equations. However, by virtue 
of the absence of experimental data in a complex stress state for variable-modulus materials 
[7], we will limit ourselves to this comparison. It does still to some degree validate the 
original theoretical premises. It should be noted that theoretical results which agreed 
satisfactorily with different empirical findings for a two-dimensional stress state were ob- 
tained earlier [5] in analyzing the creep of anisotropic and isotropic materials with differ- 
ent resistances in tension and compression by using an approach similar to that employed here. 
This fact also supports the validity of the use of physical relations (i.i), which also have 
the requisite generality and simplicity. 

2. We will examine a simply connected variable-modulus anisotropic body. The displace- 
ments have been specified on part of the surface of the body, while the surface loads have 
been specified on the rest of the surface. The body was subjected to body forces. It is 
known [8, 9] that a sufficient (but not necessary) condition of the uniqueness of the solu- 
tion of the elastic boundary-value problem for this body is satisfaction of the Drucker post- 
ulate in the form 6aij~eij ~ 0. Since nonsatisfaction of this postulate sometimes means that 
the solution is not unique [i0], let us determine the limitations which this condition places 
on the parameters in equations (i.I). 
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We then obtain 

We subsequently form the convolution 

6ai)6e 0 = ~ffo (am~z%t6a.~/% + biJci~j) + or (aU/,~6a~6aj, lo o -- 

- -  aijl~z(Thl6Oij~)tyo),,a o. 
Using the relations 

(2.1) 

6ff e = 6ff + tiff0, ~ff = bi36ffii, ffo6ff0 = aiyhlffkl6ffi], 

we r e w r i t e  Eq.  ( 2 . 1 )  i n  t h e  f o r m  

~ f f i j ~ i j  : :  (~ffe) 2 -~ fie [aij?t I6~ij~f fkl  - -  (800) 2 ]/frO. ( 2 . 2 )  

Then considering the requirement of positive determinacy of the quadratic form o~ = aijks 
oijoks we have the inequality 

a i j h l S i j Z h l ~  >0 ,  S i j  = ~ij6ffo - -  ~ffifl0, 

f r o m  w h i c h  f o l l o w s  t h e  c o n d i t i o n  

aU~zS~US~hl>(8~o) t  

U s i n g  t h i s  r e l a t i o n  and  (6Oe)  2 ~ O, o 0 > O, and  t h e  r e q u i r e m e n t ,  n a t u r a l  i n  a l l  p h y s i c a l  
equations, of nonnegativity of the equivalent stress oe ~ 0, we conclude from (2.2) that 
6oij6Eij ~ 0. It should be noted that the inequality Oe = o + o 0 ~ 0 is not always satis- 
fied in numerous practical calculations for different materials in different cases. Thus, 
despite the fact that this inequality should be regarded as a certain limitation on the param- 
eters in the proposed relations, it can be argued that the Drucker postulate does not impose 
severe requirements on the use of the given determining equations. 

3. Insufficient attention is given in the literature to study of the stress-strain 
state in structures made of anisotropic variable-modulus materials. This has to do with the 
complexity of the physical relations that are used, as well as with the inadequate develop- 
ment of numerical methods of solving the nonlinear boundary-value problems which arise. 

The theory of shells made of anisotropic variable-modulus materials is currently of great 
practical value. Such materials include plastics reinforced with glass or carbon fibers or 
metal. However, only certain problems for shells of cylindrical, conical, and spherical form 
have been solved so far [ii, 12]. Shells of more complex shape have not been examined. The 
methods of solution used here are generally difficult to extend to shells of another type. 

Presented below with sufficient generality is a formulation and method of solution of 
boundary-value problems for toroidal shells made of anisotropic variable-modulus materials. 

We will examine a toroidal shell in a system of curvilinear orthogonal coordinates a, 
~, and z, which coincide with the directions of principal curvature. Here ~ is the angle 
between the axis of rotation and a normal to the generatrix of the torus; ~ is the circumfer- 
ential coordinate; z is the normal coordinate, reckoned in the direction of the external nor- 
mal to the generatrix of the shell. The loading is assumed to be axisymmetrical. The materi- 
al of the torus is assumed to be orthotropic and of a variable modulus. The principal direc- 
tions of anisotropy i, 2, and 3 coincide with the directions ~, $, and z. The physical state 
of the material is determined by the values of the tensors a*ijks b*ij entering into law 
( 1 . 3 ) .  

S ince a l l o w i n g  f o r  the  v a r i a b l e  modulus o f  m a t e r i a l s  o f  s h e l l s  leads  to  a n o n l i n e a r  p rob-  
lem, the  prob lem must be f o r m u l a t e d  i n  accordance w i t h  t he  l i n e a r i z a t i o n  scheme t h a t  w i l l  
be used subsequently. In connection with this, instead of a torus made of a specific materi- 
al with the parameters a*ijks b*ij, we will examine the same type of toroidal shell made of 

* [0, bi~ ]. We then formulate the bound- materials characterized by the tensors aijhz = e~jhz, bij 
ary-value problems for a class of shells made of certain anisotropic materials having the 
same values of aijks and a different tensor bij. The geometric dimensions and loads are the 
same for all of the tori. We introduce the parameter t, which determines the different physi- 
cal state of the materials of the shells being examined. 
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We write the static equations in the form 

dc~ 

K - ~ -  ,, n 4 ~3 = O, 

d M  11 

where K = l/R, B = d + R sin a, C = cos a/B; R and d are dimensions of the shell (Fig~ i); 

Tll and T22 are axial forces; MII and M22 are bending moments; Qll is the shearing force; qi 
and q3 are surface loads in the directions ~ and z; the dots denote differentiation with re- 
spect to the parameter t. 

The kinematic relations have the form 

en  = el q- z~1(t,2); ( 3 . 2 )  

e I = Kdu/do~ -4- Kv ,  e 2 = 0 s  + v sin o:/B, ( 3 . 3 )  

• = Kd'O/da, • = C'O, b ---- - - K d v / d a  q-- K;~, 

where e~, e 2 and <~, r are the strains and the changes in the curvature of the middle sur- 
face; uand v are the displacements in the directions ~ and z; 0 is the angle of rotation of 
the normal to the meridian. 

We will obtain physical relations for the investigated class of toroidal shells on the 
basis of equations (1.3) written for a two-dimensional stress state. In connection with this, 
we concretize the parameter t. Here we consider that the components aijks in (1.3) do not 
depend on t and that the following equations are valid for the components bij: 

bll = t sign (bl l) ,  b22 = t l b~*g/bll ]sigll (b2"2). 

T h u s ,  t h e  a r g u m e n t  t i s  d e t e r m i n e d  by  t h e  e x p r e s s i o n  t = i b l l l .  Then  h a v i n g  d i f f e r e n t i a t e d  
Eq.  ( 1 . 3 )  w i t h  r e s p e c t  t o  t ,  we h a v e  

e~ = Ano n + A~2a2~ -k AI(t,2),  ( 3 . 4 )  

where 

A n = (I + Z) am~ + 2b,i (am~o,j + a1122~22)/% -- 

- + + bxh, 

A12 = (1 + X) ala~2 + b22 ( a m f l i l  i- all~2a~.~)la o + b n ( a ~ y  n + 

+ ao,22,2a~.~),!% - -  ~ (Ct11~0 H + an2~22)  (alt~2O'll + a~z~a2e),/O~ + bnbz2 , 

A1 = ( a m f l n  -I- a~l..2a~.~)(s § 'g~a~)la  o q- 

The n e x t  e q u a t i o n  f o l l o w s  f r o m  ( 3 . 4 ) :  

= - + - & )  0 , 2 ) ,  ( 3 . 5 )  

where 

En ---- A22/A, El2 = --An/A (1,2), A = AIIA~,.,--A~. 

Then proceeding to integral characteristics over the thickness h of the shell 

A/2 h/2 

(i.2) 
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and allowing for (3.2), we obtain the physical equations in the form 

; / 1 1  = Ane~ + Ane~ + D11~i --b nl~o~ 2 ~- -'71//p (t,2). 
a 

( 3 . 6 )  

Here 

(Bi~, Ai~, D u ) - -  .[ (t, z, z 2) E~bz ( i , ] = t , 2 ) ,  
--/*/2 

h/2 
(r~, M ~ ) = -  .[ (~,~)g,a~, 

-hl~ 
K~ = E~5~  + E n A  ~ (t,2). 

Thus, the main relations for toroidal shells are represented by Eqs. (3.1), (3.3), and (3.6). 
By introducing the vector y = (Til, QI~, Mll, u, v, 0), we can reduce these relations to a 
resolvent system of nonlinear first-order differential equations: 

Kdgi/da = f ~ - ~ F ,  + b~ (i = i16 i, ( 3 . 7 )  

where 

f , - . C ( T ~ - - Y l ) - - K ' g 2 ,  ]2= --CY2 + K'y~ + sin aT~tB,  

e ~ $ " l $ 

]o = • F1 = CT2, F~ = T~sm q/B, F 3 CM2, 

* F --0, /4' • bL - - % ,  F4 ~ el, 5 . . . .  

b~ = -- %, bj = 0 (] ----- 3, 16) , Z~ = C~ ~ , 

~ = cy~ + i~ ~n m/B, • = [ (~  --  A~2~ --  DI~;~) BI~ - -  

- -  (~  - -  ~ i . ,  - -  A f i~)  A~I/A*, 
e " e " " 

~ = ( i , -  B ~  - A ~ I ~ , -  ~ ) / ~ n ,  
• ---- (T~A u - -  M~B~t)/A*, T~ = B~ae; + At2• + T ~  

M :  = A12e; + D12~ 1 4- llr p, el = - -  ( A I , ~  + TPl)/Bv_, 
. 

Equations (3.7) are augmented by homogeneous boundary conditions with = = a I and ~ = a2: 

Yk(a,)Y~ + g~+3(~1)(i - -  Yh) = 0 (k = 1,3---), 

yh (oo~h,~+3 + y~+3(~,,)(l - "~k+~) - -  o (k = " I , 3 ) .  
( 3 . 8 )  

The file of Yi (i = i, 6) determines the type of boundary conditions. 
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The above-formulated nonlinear boundary-value problem (3.7), (3.8) should be examined 
together with the Cauchy problem for differential equations (3.5) and the relations 

dg/d t  = g~ (i = 1,6---). ( 3 . 9 )  

Here the argument t changes from zero to the value t, = Ib~II. The initial conditions for 
(3.5), (3.9) are determined by the solution of the linear boundary-value problem for a torus 
made of an anisotropic constant-modulus material. This problem is written on the basis of 
(3.7), (3.8) if we examine the quantities themselves rather than their rates and if we assume 
that T~ = T~ = M~ = M~ = 0 and assign the coefficients Aij, Bij, Dij their classical values 
[13]. Solving this boundary-value problem numerically by the stable method of discrete 
orthogonalization of Godunov, we find the components yj (j = i, 6) and the stresses for t = 
0. We then integrate the initial problem for (3.5), (3.9) by the Kutta-Merson method, i.e., 
if we write system (3.5), (3.9) in the form 

dR~/dt = Ok(R j, t)~ R = {an(a,  z), a~2(a z), gl(a), g2(a) . . . . . .  y~(a) }, . 

then the sought functions at each point of the shell for the next moment t + 5t are calcu- 
lated from the formulas 

Rk(t  + A t ) =  R~,(t) + (r~ + 4r~ + r~')/2 + o(ht) 5, 

where 

r~ = q)~, It, Re (t)] At/3, 

r~ = q)~ [t + ht/3~ R~(t) + r ~ ]  At~3,. 

r~ = q)~ [t + At~3., R~ (t) + (r~ + r~)/2] At/3t 

r~ = ~,, [t + At~2, -R 3 (t) + 3 (r~ + 3r~)/8] At/3,, 

r~ = q)~ [t + ht,~ Rj (t) + 3 (r~ - -  3r~ + 4r~] At~3. 

Here, calculation of the right sides requires fivefold solution of boundary-value problems 
(3.7), (3.8) by Godunov's discrete orthogonalization method. Such a combination of the above 
two numerical methods is used throughout the range of integration over the argument t and is 
the basis of the proposed approach to the design of shells made of variable-modulus materials. 

The initial step ht is assigned, and its subsequent values are chosen automatically on 
the basis of the condition that the cumulative error in the calculation 

e = max (r~ - -9 r~ /2  + 4r~ --  r~/2) 
h 

does not exceed a certain specified value 6. Here we use the following criterion for the 
change in the step: If ~ > 6, then the step &t decreases by a factor of two and the calcula- 
tion is repeated; if E < 6/32, then the step is doubled and the calculation is continued. 

The integrals over the thickness of the torus are determined from the Simpson formula. 
The numerical solution is completed after the value t, is reached. The stresses and the com- 
ponents Yk corresponding to this value are the solutions found, since they are sought for a 
toroidal shell with the parameters a*ijks , k*ij- 

As an example, we will examine a toroidal segment (see Fig. i) with the dimensions h = 
I0 mm, R = 232 mm, d = 400 mm, ~l = 2~/3, and ~2 = 5~/6. The shell is under a uniform in- 
ternal pressure q3 = 0.4 kgf/mm 2. Both edges of the torus, corresponding to points A I and 
BI in Fig. I, are fixed. The material of the shell is glass-fiber-reinforced plastic with 
elastic moduli (kgf/mm a) E~ = 6000, E? = 2000, E~ = 3000, E~ = 1500 and a Poisson's ratio 
v~ = 0.25, corresponding to the parameters a1~!l = 3.11-i0 -4 mm2/kgf, a~2~ 2 = 4.86.10 -4 , 
all22 = 9.76.10-6 bll = --4.73.10-3 (kgf/mm2)-~, b22 = -3.78.10 -3 " 

Figure 2 shows the distribution of the normal displcement with regard to the generatrix 
of the torus. Figure 3 illustrates the change in the strain ell on the inside surface of 
the toroidal segment. These relations are shown by the solid lines, while the dashed lines 
show the analogous results for a torus made of an anisotropic constant-modulus material with 
the constants E~ E~ = 6000, E~ = E~ = 3000, ~ = 0.25. It can be seen that the difference 
in moduli has a significant effect on the results. 
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In the shell calculations we took 55 points of the generatrix (eleven of which were 
orthogonalization points) and seven points through the thickness. Integration over the param- 
eter t was performed with an accuracy which made it possible to retain four reliable signif- 
icant digits for the stresses. The above data were established during the numerical experi- 
ments. 

The example took 5 min to solve on a BESM-6 computer by the above-described algorithm. 
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